Debasish specializes in leading delivery of enterprise scale solutions for various clients ranging from small ones to Fortune 500 companies. He is the technology evangelist of Anshin Software (http://www.anshinsoft.com) and takes pride in institutionalizing best practices in software design and programming. He loves to program in Java, Ruby, Erlang and Scala and has been trying desperately to get out of the unmanaged world of C++. Debasish is a DZone MVB and is not an employee of DZone and has posted 55 posts at DZone. You can read more from them at their website. View Full User Profile

Objects as Actors?

04.13.2009
| 10956 views |
  • submit to reddit

Tony Arcieri, creator of Reia, recently brought up an interesting topic on unifying actors and objects. Talking about Scala and his disliking towards Scala's implementation of actors as an additional entity on top of objects, he says, it would have been a more useful abstraction to model all objects as actors. Doing it that way would eschew many of the overlapping functions that both of the object and actor semantics have implemented today. In Reia, which is supposed to run on top of BEAM (the Erlang VM), he has decided to make all objects as actors.

The way I look at it, this is mostly a decision of the philosophy of the language design. Scala is targetted to be a general purpose programming language, where concurrency and distribution are not the central concerns to address as part of the core language design. The entire actor model has hence been implemented as a library that integrates seamlessly with the rest of Scala's core object/functional engineering. This is a design decision which the language designers did take upfront - hence objects in Scala, by default, bind to local invocation semantics, that enable it to take advantage of all the optimizations and efficiencies of being collocated in the same process.

The actor model was designed primarily to address the concerns of distributed programming. As Jonas Boner recently said on Twitter - "The main benefit of the Actor model is not simpler concurrency but fault-tolerance and reliability". And for fault tolerance you need to have at least two machines running your programs. We all know the awesome capabilities of fault tolerance that the Erlang actor model offers through supervisors, linked actors and transparent restarts. Hence languages like Erlang, which address the concerns of concurrency and distribution as part of the core, have decided to implement actors as their basic building block of abstractions. This was done with the vision that the Erlang programming style will be based on simple primitives of process spawning and message passing, both of which implemented as low overhead primitives in the virtual machine. The philosophy of Scala is, however, a bit different. Though still it is not that difficult to implement the Active Object pattern on top of the Scala actors platform.

Erlang allows you to write programs that will run without any change in a regular non-distributed Erlang session, on two different Erlang nodes running on the same computer and as well on Erlang nodes running on two physically separated computers either in the same LAN or over the internet. It can do this, because the language designers decided to map the concurrency model naturally to distributed deployments extending the actor model beyond VM boundaries.

Another language Clojure, which also has strong concurrency support decided to go the Scala way addressing distribution concerns. Distribution is not something that Rich Hickey decided to hardwire into the core of the language. Here is what he says about it ..

"In Erlang the concurrency model is (always) a distributed one and in Clojure it is not. I have some reservations about unifying the distributed and non-distributed models [..], and have decided not to do so in Clojure, but I think Erlang, in doing so, does the right thing in forcing programmers to work as if the processes are distributed even when they are not, in order to allow the possibility of transparent distribution later, e.g. in the failure modes, the messaging system etc. However, issues related to latency, bandwidth, timeouts, chattiness, and costs of certain data structures etc remain."

And finally, on the JVM, there are a host of options that enable distribution of your programs, which is yet another reason not to go for language specific solutions. If you are implementing your language on top of the Erlang VM, it's all but natural to leverage the awesome power of cross virtual machine distribution capabilities that it offers. While for JVM, distribution can better be left to specialized frameworks.

 

References
Published at DZone with permission of Debasish Ghosh, author and DZone MVB. (source)

(Note: Opinions expressed in this article and its replies are the opinions of their respective authors and not those of DZone, Inc.)

Comments

John Gale replied on Mon, 2009/08/10 - 10:09am

Thanks alot for this informative post. I've been trying to work this out for a while but theres a lack of online resources and I couldn't find it in any books! Rucksack guide

Tom Tino replied on Fri, 2009/08/14 - 6:22pm

Very great post, lots of useful information.

Thank for share.

-------------
Bee Directory | EZ Directory | A1A Directory

Comment viewing options

Select your preferred way to display the comments and click "Save settings" to activate your changes.