Performance Zone is brought to you in partnership with:

Ayende Rahien is working for Hibernating Rhinos LTD, a Israeli based company producing developer productivity tools for OLTP applications such as NHibernate Profiler (nhprof.com), Linq to SQL Profiler(l2sprof.com), Entity Framework Profiler (efprof.com) and more. Ayende is a DZone MVB and is not an employee of DZone and has posted 462 posts at DZone. You can read more from them at their website. View Full User Profile

Sparse and Memory-mapped Files

10.01.2013
| 4951 views |
  • submit to reddit

One of the problems with memory-mapped files is that you can’t actually map beyond the end of the file. So you can’t use that to extend your file.  I had a thought about and set out to check out what happens when I create a sparse file, a file that only take space when you write to it, and at the same time, map it.

As it turns out, this actually works pretty well in practice. You can do so without any issues. Here is how it works:

using (var f = File.Create(path))
{
    int bytesReturned = 0;
    var nativeOverlapped = new NativeOverlapped();
    if (!NativeMethod.DeviceIoControl(f.SafeFileHandle, EIoControlCode.FsctlSetSparse, IntPtr.Zero, 0,
                                      IntPtr.Zero, 0, ref bytesReturned, ref nativeOverlapped))
    {
        throw new Win32Exception();
    }
    f.SetLength(1024*1024*1024*64L);
}

This creates a sparse file that is 64 GB in size. Then we can map it normally:

using (var mmf = MemoryMappedFile.CreateFromFile(path))
using (var memoryMappedViewAccessor = mmf.CreateViewAccessor(0, 1024*1024*1024*64L))
{
    for (long i = 0; i < memoryMappedViewAccessor.Capacity; i += buffer.Length)
    {
        memoryMappedViewAccessor.WriteArray(i, buffer, 0, buffer.Length);
    }
}

And then we can do stuff to it.  And that includes writing to yet-unallocated parts of the file. This also means that you don’t have to worry about writing past the end of the file, the OS will take care of all of that for you.

Happy happy, joy joy, etc.

There is one problem with this method, however. It means that you have a 64 GB file, but you don’t have that much allocated. What that means in turn is that you might not have that much space available for the file. Which brings up an interesting question, what happens when you are trying to commit a new page, and the disk is out of space? Using file I/O you would get an I/O error with the right code. But when using memory mapped files, the error would actually turn up during access, which can happen pretty much anywhere. It also means that it is a Standard Exception Handling error in Windows, which requires special treatment.

To test this out, I wrote the following so it would write to a disk that had only about 50 GB free. I wanted to know what would happen when it ran out of space. That is actually something that happens, and we need to be able to address this issue robustly. The kicker is that this might actually happen at any time, so that would really result is some… interesting behavior with regards to robustness. In other words, I don’t think that this is a viable option, it is a really cool trick, but I don’t think it is a very well thought out option.

By the way, the result of my experiment was that we had an effectively a frozen process. No errors, nothing, just a hung. Also, I am pretty sure that WriteArray() is really slow, but I’ll check this out at another pointer in time.



Published at DZone with permission of Ayende Rahien, author and DZone MVB. (source)

(Note: Opinions expressed in this article and its replies are the opinions of their respective authors and not those of DZone, Inc.)