Big Data/Analytics Zone is brought to you in partnership with:

John Cook is an applied mathematician working in Houston, Texas. His career has been a blend of research, software development, consulting, and management. John is a DZone MVB and is not an employee of DZone and has posted 175 posts at DZone. You can read more from them at their website. View Full User Profile

Offended by Conditional Certainty

02.14.2013
| 1686 views |
  • submit to reddit

It’s a simple rule of probability that if A makes B more likely, B makes A more likely. That is, if the conditional probability of A given B is larger than the probability of A alone, the the conditional probability of B given A is larger than the probability of B alone. In symbols,

Prob( A | B ) > Prob( A ) ⇒ Prob( B | A ) > Prob( B ).

The proof is trivial: Apply the definition of conditional probability and observe that if Prob( A ∩ B ) / Prob( B ) > Prob( A ), then Prob( A ∩ B ) / Prob( A ) > Prob( B ).

Let A be the event that someone was born in Arkansas and let B be the event that this person has been president of the United States. There are five living current and former US presidents, and one of them, Bill Clinton, was born in Arkansas, a state with about 1% of the US population. Knowing that someone has been president increases your estimation of the probability that this person is from Arkansas. Similarly, knowing that someone is from Arkansas should increase your estimation of the chances that this person has been president.

The chances that an American selected at random has been president are very small, but as small as this probability is, it goes up if you know the person is from Arkansas. In fact, it goes up by the same proportion as the opposite probability. Knowing that someone has been president increases their probability of being from Arkansas by a factor of 20, so knowing that someone is from Arkansas increases the probability that they have been president by a factor of 20 as well. This is because

Prob( A | B ) / Prob( A ) = Prob( B | A ) / Prob( B ).

This isn’t controversial when we’re talking about presidents and where they were born. But it becomes more controversial when we apply the same reasoning, for example, to deciding who should be screened at airports.

When I jokingly said that being an Emacs user makes you a better programmer, it appears a few Vim users got upset. Whether they were serious 0r not, it does seem that they thought “Hey, what does that say about me? I use Vim. Does that mean I’m a bad programmer?”

Assume for the sake of argument that Emacs users are better programmers, i.e.

Prob( good programmer | Emacs user )  >  Prob( good programmer ).

We’re not assuming that Emacs users are necessarily better programmers, only that a larger proportion of Emacs users are good programmers. And we’re not saying anything about causality, only probability.

Does this imply that being a Vim user lowers your chance of being a good programmer? i.e.

Prob( good programmer | Vim user )  <  Prob( good programmer )?

No, because being a Vim user is a specific alternative to being an Emacs user, and there are programmers who use neither Emacs nor Vim. What the above statement about Emacs would imply is that

Prob( good programmer | not a Emacs user )  <  Prob( good programmer ).

That is, if knowing that someone uses Emacs increases the chances that they are a good programmer, then knowing that they are not an Emacs user does indeed lower the chances that they are a good programmer, if we have no other information. In general

Prob( A | B ) > Prob( A ) ⇒ Prob( A | not B ) < Prob( A ).

To take a more plausible example, suppose that spending four years at MIT obtaining a computer science degree makes you a better programmer. Then knowing that someone has a CS degree from MIT increases the probability that this person is a good programmer. But if that’s true, it must also be true that absent any other information, knowing that someone does not have a CS degree from MIT decreases the probability that this person is a good programmer. If a larger proportion of good programmers come from MIT, then a smaller proportion must not come from MIT.

***

This post uses the ideas of information and conditional probability interchangeably. If you’d like to read more on that perspective, I recommendProbability Theory: The Logic of Science by E. T. Jaynes.

Published at DZone with permission of John Cook, author and DZone MVB. (source)

(Note: Opinions expressed in this article and its replies are the opinions of their respective authors and not those of DZone, Inc.)

Comments

First Last replied on Thu, 2013/02/14 - 6:46am

This actually proves one thing: You can conclude anything if your assumptions are wrong.

Comment viewing options

Select your preferred way to display the comments and click "Save settings" to activate your changes.