Mr. Lott has been involved in over 70 software development projects in a career that spans 30 years. He has worked in the capacity of internet strategist, software architect, project leader, DBA, programmer. Since 1993 he has been focused on data warehousing and the associated e-business architectures that make the right data available to the right people to support their business decision-making. Steven is a DZone MVB and is not an employee of DZone and has posted 138 posts at DZone. You can read more from them at their website. View Full User Profile

New Focus: Data Scientist

07.18.2014
| 2012 views |
  • submit to reddit

Read this: http://www.forbes.com/sites/emc/2014/06/26/the-hottest-jobs-in-it-training-tomorrows-data-scientists/

Interesting subject areas: Statistics, Machine Learning, Algorithms.

I've had questions about data science from folks who (somehow) felt that calculus and differential equations were important parts of data science. I couldn't figure out how they decided that diffeq's were important. Their weird focus on calculus didn't seem to involve using any data. Odd: wanting to be a data scientist, but being unable to collect actual data.

Folks involved in data science seem to think otherwise. Calculus appears to be a side-issue at best.

I can see that statistics are clearly important for data science. Correlation and regression-based models appear to be really useful. I think, perhaps, that these are the lynch-pins of much data science. Use a sample to develop a model, confirm it over successive samples, then apply it to the population as a whole.

Algorithms become important because doing dumb statistical processing on large data sets can often prove to be intractable. Computing the median of a very large set of data can be essentially impossible if the only algorithm you know is to sort the data and find the middle-most item.

Machine learning and pattern detection may be relevant for deducing a model that offers some predictive power. Personally, I've never worked with this. I've only worked with actuaries and other quants who have a model they want to confirm (or deny or improve.)

Published at DZone with permission of Steven Lott, author and DZone MVB. (source)

(Note: Opinions expressed in this article and its replies are the opinions of their respective authors and not those of DZone, Inc.)