Mobile Zone is brought to you in partnership with:

Rafael is a software engineer at Kantega based in Oslo. He is a Java enthusiast with particular interests in byte code engineering, functional programming, multi-threaded applications and the Scala language. Rafael is a DZone MVB and is not an employee of DZone and has posted 5 posts at DZone. You can read more from them at their website. View Full User Profile

CGLib: The Missing Manual

01.07.2014
| 12125 views |
  • submit to reddit
The byte code instrumentation library cglib is a popular choice among many well-known Java frameworks such as Hibernate (not anymore) or Spring for doing their dirty work. Byte code instrumentation allows to manipulate or to create classes after the compilation phase of a Java application. Since Java classes are linked dynamically at run time, it is possible to add new classes to an already running Java program. Hibernate uses cglib for example for its generation of dynamic proxies. Instead of returning the full object that you stored in a a database, Hibernate will return you an instrumented version of your stored class that lazily loads some values from the database only when they are requested. Spring used cglib for example when adding security constraints to your method calls. Instead of calling your method directly, Spring security will first check if a specified security check passes and only delegate to your actual method after this verification. Another popular use of cglib is within mocking frameworks such as mockito, where mocks are nothing more than instrumented class where the methods were replaced with empty implementations (plus some tracking logic).

Other than ASM - another very high-level byte code manipulation library on top of which cglib is built - cglib offers rather low-level byte code transformers that can be used without even knowing about the details of a compiled Java class. Unfortunately, the documentation of cglib is rather short, not to say that there is basically none. Besides a single blog article from 2005 that demonstrates the Enhancer class, there is not much to find. This blog article is an attempt to demonstrate cglib and its unfortunately often awkward API.

Enhancer

Let's start with the Enhancer class, the probably most used class of the cglib library. An enhancer allows the creation of Java proxies for non-interface types. The Enhancer can be compared with the Java standard library's Proxy class which was introduced in Java 1.3. The Enhancer dynamically creates a subclass of a given type but intercepts all method calls. Other than with the Proxy class, this works for both class and interface types. The following example and some of the examples after are based on this simple Java POJO:

public class SampleClass {
  public String test(String input) {
    return "Hello world!";
  }
}

Using cglib, the return value of test(String) method can easily be replaced by another value using an Enhancer and a FixedValue callback:

@Test
public void testFixedValue() throws Exception {
  Enhancer enhancer = new Enhancer();
  enhancer.setSuperclass(SampleClass.class);
  enhancer.setCallback(new FixedValue() {
    @Override
    public Object loadObject() throws Exception {
      return "Hello cglib!";
    }
  });
  SampleClass proxy = (SampleClass) enhancer.create();
  assertEquals("Hello cglib!", proxy.test(null));
}

In the above example, the enhancer will return an instance of an instrumented subclass of SampleClass where all method calls return a fixed value which is generated by the anonymous FixedValue implementation above. The object is created by Enhancer#create(Object...) where the method takes any number of arguments which are used to pick any constructor of the enhanced class. (Even though constructors are only methods on the Java byte code level, the Enhancer class cannot instrument constructors. Neither can it instrument static or final classes.) If you only want to create a class, but no instance, Enhancer#createClass will create a Class instance which can be used to create instances dynamically. All constructors of the enhanced class will be available as delegation constructors in this dynamically generated class.

Be aware that any method call will be delegated in the above example, also calls to the methods defined in java.lang.Object. As a result, a call to proxy.toString() will also return "Hello cglib!". In contrast will a call to proxy.hashCode() result in a ClassCastException since the FixedValue interceptor always returns a String even though the Object#hashCode signature requires a primitive integer.

Another observation that can be made is that final methods are not intercepted. An example of such a method is Object#getClass which will return something like "SampleClass$$EnhancerByCGLIB$$e277c63c" when it is invoked. This class name is generated randomly by cglib in order to avoid naming conflicts. Be aware of the different class of the enhanced instance when you are making use of explicit types in your program code. The class generated by cglib will however be in the same package as the enhanced class (and therefore be able to override package-private methods). Similar to final methods, the subclassing approach makes for the inability of enhancing final classes. Therefore frameworks as Hibernate cannot persist final classes.

Next, let us look at a more powerful callback class, the InvocationHandler, that can also be used with an Enhancer:

@Test
public void testInvocationHandler() throws Exception {
  Enhancer enhancer = new Enhancer();
  enhancer.setSuperclass(SampleClass.class);
  enhancer.setCallback(new InvocationHandler() {
    @Override
    public Object invoke(Object proxy, Method method, Object[] args) 
        throws Throwable {
      if(method.getDeclaringClass() != Object.class 
          && method.getReturnType() == String.class) {
        return "Hello cglib!";
      } else {
        throw new RuntimeException("Do not know what to do.");
      }
    }
  });
  SampleClass proxy = (SampleClass) enhancer.create();
  assertEquals("Hello cglib!", proxy.test(null));
  assertNotEquals("Hello cglib!", proxy.toString());
}

This callback allows us to answer with regards to the invoked method. However, you should be careful when calling a method on the proxy object that comes with the InvocationHandler#invoke method. All calls on this method will be dispatched with the same InvocationHandler and might therefore result in an endless loop. In order to avoid this, we can use yet another callback dispatcher:

@Test
public void testMethodInterceptor() throws Exception {
  Enhancer enhancer = new Enhancer();
  enhancer.setSuperclass(SampleClass.class);
  enhancer.setCallback(new MethodInterceptor() {
    @Override
    public Object intercept(Object obj, Method method, Object[] args, MethodProxy proxy)
        throws Throwable {
      if(method.getDeclaringClass() != Object.class 
          && method.getReturnType() == String.class) {
        return "Hello cglib!";
      } else {
        proxy.invokeSuper(obj, args);
      }
    }
  });
  SampleClass proxy = (SampleClass) enhancer.create();
  assertEquals("Hello cglib!", proxy.test(null));
  assertNotEquals("Hello cglib!", proxy.toString());
  proxy.hashCode(); // Does not throw an exception or result in an endless loop.
}

The MethodInterceptor allows full control over the intercepted method and offers some utilities for calling the method of the enhanced class in their original state. But why would one want to use other methods anyways? Because the other methods are more efficient and cglib is often used in edge case frameworks where efficiency plays a significant role. The creation and linkage of the MethodInterceptor requires for example the generation of a different type of byte code and the creation of some runtime objects that are not required with the InvocationHandler. Because of that, there are other classes that can be used with the Enhancer:

  • LazyLoader: Even though the LazyLoader's only method has the same method signature as FixedValue, the LazyLoader is fundamentally different to the FixedValue interceptor. The LazyLoader is actually supposed to return an instance of a subclass of the enhanced class. This instance is requested only when a method is called on the enhanced object and then stored for future invocations of the generated proxy. This makes sense if your object is expensive in its creation without knowing if the object will ever be used. Be aware that some constructor of the enhanced class must be called both for the proxy object and for the lazily loaded object. Thus, make sure that there is another cheap (maybe protected) constructor available or use an interface type for the proxy. You can choose the invoked constructed by supplying arguments to Enhancer#create(Object...).
  • Dispatcher: The Dispatcher is like the LazyLoader but will be invoked on every method call without storing the loaded object. This allows to change the implementation of a class without changing the reference to it. Again, be aware that some constructor must be called for both the proxy and the generated objects.
  • ProxyRefDispatcher: This class carries a reference to the proxy object it is invoked from in its signature. This allows for example to delegate method calls to another method of this proxy. Be aware that this can easily cause an endless loop and will always cause an endless loop if the same method is called from within ProxyRefDispatcher#loadObject(Object).
  • NoOp: The NoOp class does not what its name suggests. Instead, it delegates each method call to the enhanced class's method implementation.

At this point, the last two interceptors might not make sense to you. Why would you even want to enhance a class when you will always delegate method calls to the enhanced class anyways? And you are right. These interceptors should only be used together with a CallbackFilter as it is demonstrated in the following code snippet:

@Test
public void testCallbackFilter() throws Exception {
  Enhancer enhancer = new Enhancer();
  CallbackHelper callbackHelper = new CallbackHelper(SampleClass.class, new Class[0]) {
    @Override
    protected Object getCallback(Method method) {
      if(method.getDeclaringClass() != Object.class 
          && method.getReturnType() == String.class) {
        return new FixedValue() {
          @Override
          public Object loadObject() throws Exception {
            return "Hello cglib!";
          };
        }
      } else {
        return NoOp.INSTANCE; // A singleton provided by NoOp.
      }
    }
  };
  enhancer.setSuperclass(MyClass.class);
  enhancer.setCallbackFilter(callbackHelper);
  enhancer.setCallbacks(callbackHelper.getCallbacks());
  SampleClass proxy = (SampleClass) enhancer.create();
  assertEquals("Hello cglib!", proxy.test(null));
  assertNotEquals("Hello cglib!", proxy.toString());
  proxy.hashCode(); // Does not throw an exception or result in an endless loop.
}

The Enhancer instance accepts a CallbackFilter in its Enhancer#setCallbackFilter(CallbackFilter) method where it expects methods of the enhanced class to be mapped to array indices of an array of Callback instances. When a method is invoked on the created proxy, the Enhancer will then choose the according interceptor and dispatch the called method on the corresponding Callback (which is a marker interface for all the interceptors that were introduced so far). To make this API less awkward, cglib offers a CallbackHelper which will represent a CallbackFilter and which can create an array of Callbacks for you. The enhanced object above will be functionally equivalent to the one in the example for the MethodInterceptor but it allows you to write specialized interceptors whilst keeping the dispatching logic to these interceptors separate.

How does it work?

When the Enhancer creates a class, it will set create a privatestatic field for each interceptor that was registered as a Callback for the enhanced class after its creation. This also means that class definitions that were created with cglib cannot be reused after their creation since the registration of callbacks does not become a part of the generated class's initialization phase but are prepared manually by cglib after the class was already initialized by the JVM. This also means that classes created with cglib are not technically ready after their initialization and for example cannot be sent over the wire since the callbacks would not exist for the class loaded in the target machine.

Depending on the registered interceptors, cglib might register additional fields such as for example for the MethodInterceptor where two privatestatic fields (one holding a reflective Method and a the other holding MethodProxy) are registered per method that is intercepted in the enhanced class or any of its subclasses. Be aware that the MethodProxy is making excessive use of the FastClass which triggers the creation of additional classes and is described in further detail below.

For all these reasons, be careful when using the Enhancer. And always register callback types defensively, since the MethodInterceptor will for example trigger the creation of additional classes and register additional static fields in the enhanced class. This is specifically dangerous since the callback variables are also stored as static variables in the enhanced class: This implies that the callback instances are never garbage collected (unless their ClassLoader is, what is unusual). This is in particular dangerous when using anonymous classes which silently carry a reference to their outer class. Recall the example above:

@Test
public void testFixedValue() throws Exception {
  Enhancer enhancer = new Enhancer();
  enhancer.setSuperclass(SampleClass.class);
  enhancer.setCallback(new FixedValue() {
    @Override
    public Object loadObject() throws Exception {
      return "Hello cglib!";
    }
  });
  SampleClass proxy = (SampleClass) enhancer.create();
  assertEquals("Hello cglib!", proxy.test(null));
}

The anonymous subclass of FixedValue would become hardly referenced from the enhanced SampleClass such that neither the anonymous FixedValue instance or the class holding the @Test method would ever be garbage collected. This can introduce nasty memory leaks in your applications. Therefore, do not use non-static inner classes with cglib. (I only use them in this blog entry for keeping the examples short.)

Finally, you should never intercept Object#finalize(). Due to the subclassing approach of cglib, intercepting finalize is implemented by overriding it what is in general a bad idea. Enhanced instances that intercept finalize will be treated differently by the garbage collector and will also cause these objects being queued in the JVM's finalization queue. Also, if you (accidentally) create a hard reference to the enhanced class in your intercepted call to finalize, you have effectively created an noncollectable instance. This is in general nothing you want. Note that final methods are never intercepted by cglib. Thus, Object#wait, Object#notify and Object#notifyAll do not impose the same problems. Be however aware that Object#clone can be intercepted what is something you might not want to do.

Published at DZone with permission of Rafael Winterhalter, author and DZone MVB. (source)

(Note: Opinions expressed in this article and its replies are the opinions of their respective authors and not those of DZone, Inc.)